Vector Spaces one Subspaces
(1) Let $v=(3,4) \in V$. The:

1 回 $V=1$ 回 $(3,4)=(-4,3) \neq(3,4)$. So VS 5 Fails. (on ta exam, you doit howe to quote th numb of the axiom.) There ore other VS axions that foil hers but you only reed to pick one.
(2) If T is linear, $T: v \rightarrow w, \quad \tan T\left(O_{v}\right)=O w$.

Here $T\left(O_{v}\right)=O_{v}$, so $\quad O_{v} \in \omega$.
Let $x, y \in W$. fan $T(x+y)=T(x)+T(y)=x+y$. So $x+y \in \omega$.
Let $\lambda \in F$ are $x \in \omega$. the $T(\lambda x)=\lambda T(x)=\lambda x$. So $\lambda x \in \omega$.
(3) Let f_{0} refer to ta zero vector in V. That is, $f_{0}(x)=0$ for all $x \in \mathbb{R}$.
then $f_{0}(1)=0=-f(2)$, so $f_{1} \in V$.
Suppose $f, g \in V$. Tan $(f+g)(1)=f(1)+g(1)=-f(2)-g(2)=-(f+g)(2)$.
Then $f+g \in V$.
Suppose $f \in V$ al $\lambda \in \mathbb{R}$. $\operatorname{Tn}(\lambda f)(1)=\lambda(f(1))=\lambda(-f(2))=-(\lambda f)(2)$.
So $\lambda f \in V$.
(1) Not a subspace. To prepore for the exam, come up with at least three reasons why not.
(5)

$$
w_{1}=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & a
\end{array}\right) \right\rvert\, a, b, c \in \mathbb{R}\right\}=\left\{\left.a\left(\begin{array}{ll}
10 \\
0 & 1
\end{array}\right)+b\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)+c\left(\begin{array}{ll}
0 & 0 \\
10
\end{array}\right) \right\rvert\, a, b, c \in \mathbb{R}\right\} .
$$

$\operatorname{tin}\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\binom{0}{10}\right\}$ spans ω_{1}.
Set $\quad a_{1}\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)+a_{2}\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)+a_{3}\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$.
The $\left(\begin{array}{ll}a_{1} & a_{2} \\ a_{3} & a_{1}\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$, so all ta $a_{i}=0$.
the our soanniz set is independent, so a basis.

$$
\begin{aligned}
& \operatorname{din}\left(\omega_{1}\right)=3 . \\
& \omega_{2}=\left\{\left.\left(\begin{array}{cc}
0 & a \\
-a & b
\end{array}\right) \right\rvert\, a_{1} b \in \mathbb{R}\right\}=\left\{\left.a\binom{0}{-1}+b\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \right\rvert\, a_{1} b \in \mathbb{R}\right\} \\
&= \operatorname{ssan}\left\{\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\right\} \text {. Setts } a_{1}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)+a_{2}\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)=0, \\
& \text { we get }\left(\begin{array}{cc}
0 & a_{1} \\
-a_{1} & a_{2}
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right), \text { so } a_{1}=a_{2}=0 . \\
& \operatorname{din}\left(\omega_{2}\right)=2
\end{aligned}
$$

For $\omega_{1} \cap \omega_{2}$, since $a_{11}=0$ ir ω_{2} an $a_{11}=a_{22}$ in ω_{1}, $a_{11}=a_{22}=0$ in the intr -section. W, has no restinction on a_{12} al a_{21}, so only the restriction in ω_{2} applies. the $\omega_{1} n \omega_{2}=\operatorname{span}\left\{\binom{01}{-10}\right\} . \quad \operatorname{din}\left(\omega_{1} \tilde{n} \omega_{2}\right)=1$.

Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{ll}a & b \\ c & 0\end{array}\right)+\left(\begin{array}{ll}0 & 0 \\ 0 & d\end{array}\right) \in w_{1}+w_{2}$.
Since A is arbitrary, we have $M_{2 \times 2}(R) \subseteq \omega_{1}+\omega_{2}$.
Since $\omega_{1}+\omega_{2} \leq M_{3 R}(\mathbb{R})$ by definition, we hove

$$
\omega_{1}+\omega_{2}=M_{2 \times 2}(R) \cdot \quad \sin \quad \operatorname{din}\left(\omega_{1}+\omega_{2}\right)=4 \cdot A
$$

basis would be to stand el basis.

Spanny, Inbpaluce, Bases.
(1) If $a(u+v)+b(u+2 v)=0$, tan
$(a+b) u+(a+2 b) v=0$. Since $\{u, v\}$ is inepalt,
$a+b=0$ ar $a+2 b=0$. So $a+b-(a+2 s)=-b=0$. The $c=0$.
So \{utv, ut 20\} ~ i s ~ m e p e r l t . ~ S i n c e ~ i t s ~ u n ~ i n e m p e n a t ~ set of size 2 in a space of dimension 2 , it's a basis.
(2) (a) Let $a_{1} v_{1}+a_{2} v_{2}=0$ be a non-trivial representation of zens. Th $T\left(a_{1} v_{1}+a_{2} v_{2}\right)=a_{1} T\left(v_{1}\right)+a_{2} T\left(v_{2}\right)=0$. Since the a_{1}, a_{2} are wot both Zen, this is a non-trival represection as well.
(b) This is false. Com up with a contrexarple.
(3) Consider the set $S=\left\{v_{1}, v_{2}, \ldots, v_{n-1}\right\}=$

$$
\{(1,0, \ldots,-1),(0,1, \ldots,-1),(0,0,1, \ldots,-1), \ldots,(0,0, \ldots, 1,-1)\} .
$$

the s spars ω, as $\sum_{i=1}^{n-1} a_{i} v_{i}=\left(a_{1}, a_{2}, \ldots, a_{n-1},-\left(a_{1}+a_{2}+\ldots+a_{n-1}\right)\right\}$
If $\sum_{i=1}^{n-1} q_{i} v_{i}=0$, ta $a_{1}=a_{2}=\ldots=a_{n-1}=0$, via comespordy coordinates with $(0,0, \ldots, 0)$.
So S is a basis, al $\operatorname{di}(w)=v-1$.
(4) Since $w_{i} \neq V$, dim $w_{i} \leq n-1$. This 3 because a subset of V of dimension n would be equal to V.
Suppose $\operatorname{din}\left(\omega_{1} \cap \omega_{2}\right)=n-1$ as well. Since $\omega_{1} \cap \omega_{2} \subseteq \omega_{1}$, wed have $\omega_{1} \wedge \omega_{2}=\omega_{1}$ in tut case. For the sane reason wed han $\omega_{1} \cap \omega_{2}=\omega_{2}$. Then, if $\operatorname{din}\left(\omega_{1} \cap \omega_{2}\right)=n-1$, $\omega_{1}=\omega_{2}$. So $\operatorname{dim}\left(\omega_{1} \wedge \omega_{2}\right)$ is at most $u-2$.
(5) Suppose $a_{1}\left(v_{1}+w\right)+a_{2}\left(v_{2}+w\right)+\ldots+a_{n}\left(v_{n}+w\right)=0$, an wot
all the a_{i} are zen.
Ten $a_{1} v_{1}+\cdots+a_{n} v_{n}+\left(\sum_{i=1}^{n} a_{i}\right) w=0$.
Since $\left\{v_{1}, \ldots, v_{n}\right\}$ is inluperslat, $\sum_{i=1}^{n} q_{i} \neq 0$. Let $\lambda=\frac{1}{\sum a_{i}}$.
this λ exists, be case $\sum_{i=1}^{n} a_{i}$ is a -ou-zes element in a field.

Gin $\omega=\frac{q_{1}}{\lambda} v_{1}+\ldots+\frac{a_{n}}{\lambda} v_{n}$. Hence $\omega \in \operatorname{spon}\left\{v_{11} v_{2}, \ldots, v_{n}\right\}$.

Transformations
(1) If $R(T)=N(T)$, tan $\begin{aligned} \\ \text { ark }+ \text { nullity of } T \text { is an even }\end{aligned}$ number. But the Dirensian te corer says rank + nullity $=\operatorname{dim}(V)$, which is old. So possible.

Note: If $\operatorname{dim}(V)$ is even, this is possible. $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $T(a, b)=(b, 0)$.
(2) T canst be into anyway. Th $\operatorname{rank}(T) \leq \operatorname{din}\left(\mathbb{R}^{5}\right)$ by the diversion theorem. So it's not possible of $R(T)=P_{5}(\mathbb{R})$, Since $\operatorname{din}\left(P_{5}\right)=6$.
(3) (a)

$$
\begin{aligned}
T(\lambda A & +B)=T\left(\begin{array}{cc}
\lambda a_{11}+b_{11} & \lambda a_{12}+b_{12} \\
\lambda a_{21}+b_{21} & \lambda \lambda_{22}+b_{22}
\end{array}\right)=\left(\lambda a_{11}+b_{1}-\left(\lambda a_{22}+b_{22}\right),-2\left(\lambda a_{22}+b_{22}\right)-\lambda_{12}+b_{12}\right) \\
& =\left(\lambda\left(a_{11}-a_{22}\right)+b_{11}-b_{22}, \lambda\left(-2 a_{22}-a_{12}\right)+\left(-2 b_{22}-b_{12}\right)\right) \\
& =\lambda\left(a_{11}-a_{22},-2 a_{22}-a_{12}\right)+\left(b_{11}-b_{22},-2 b_{22}-b_{12}\right) \\
& =\lambda T(A)+T(B) .
\end{aligned}
$$

(b) N(T) satisfies $a_{11}=a_{22}, a_{12}=-2 a_{22}$.

$$
N(T)=\left\{\left(\begin{array}{cc}
a_{11} & -2 a_{11} \\
a_{21} & a_{11}
\end{array}\right)\left(a_{i j} \in \mathbb{R}\right\}=\operatorname{sean}\left\{\left(\begin{array}{cc}
1 & -2 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)\right\} .\right.
$$

These vectors a not multiples of each other, so independent. the a basis for $N(T)$ is $\left\{\left(\begin{array}{c}1-2 \\ 0 \\ 1\end{array}\right),\binom{0}{10}\right\}$.
$T\left(E^{\prime \prime}\right)=(1,0), T\left(E^{12}\right)=(0,-1)$. Since $\{(1,0),(0,-1)\}$ is ineperlt, it mist be a basis for $R(T)$, as $\operatorname{dim} V-\operatorname{div}(N(T))=4-2=2$. So we know $\operatorname{div}(R(T))=2$.
4. (a) $T\left(P_{2}(\mathbb{R}) \rightarrow P_{3}(\mathbb{R})\right.$ by $T(f)=\delta$. Clearly $N(T)=\{0 \xi$, so
(1) T^{3} ore-to-on. But T is rot anto, as $x^{3} \& R(T)$.
(b) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $T(a, b)=a$.

Not one-to-on as $T(1,0)=T(1,1)$.
Outo, as for $x \in \mathbb{R}, T(x, 0)=x$.
(5)

$$
\begin{aligned}
T(\lambda f+g)= & x(\lambda f+g)(x))+\frac{d}{d x}(\lambda f+g)(x) \\
& =x((\lambda f)(x)+g(x))+\frac{d}{d x}(\lambda \lambda f(x))+\frac{d}{d x}(g(x)) \\
& =\lambda x f(x)+x g(x)+\lambda f^{\prime}(x)+g^{\prime}(x) \\
& =\lambda x f(x)+\lambda f^{\prime}(x)+x g(x)+g^{\prime}(x) \\
& =\lambda T(f(x))+T(g(x)) .
\end{aligned}
$$

